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Fast scalar decay in a shear flow:
modes and pseudomodes
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The decay of a passive scalar in a sinusoidal shear flow translating in the cross-stream
direction at a constant speed u is studied in the limit of small diffusivity κ . The decay
rate, obtained by solving an eigenvalue problem, is found to tend to a non-zero
constant as κ → 0 when u is of order κ1/2. This result, establishing that fast decay is
possible in shear flows, is fragile however: because of the existence of pseudomodes,
the addition of a small noise leads to decay rates that decrease to zero with κ as κ2/5.

1. Introduction
The aim of this paper is to provide an example of a unidirectional flow in which

the decay of a passive scalar is fast. By fast decay, we mean that the rate at which
fluctuations of the scalar concentration decay in the long-time limit is independent
of the diffusivity κ as this tends to zero (or, equivalently, independent of the
Péclet number as this tends to infinity). Fast decay in this sense is known to occur
in some two-dimensional random flows (see, e.g., Pierrehumbert 1994; Antonsen
et al. 1996; Tsang, Antonsen & Ott 2005; Haynes & Vanneste 2005). A crucial
ingredient of these flows, in addition to the spatial smoothness and bounded domain
ensuring exponential decay, is that they are stretching: particle trajectories separate
exponentially fast, leading to a rapid thinning of the scalar structures down to a
diffusive scale proportional to κ1/2. Here, by contrast, we consider a flow in which
the particle separation is only linear in time.

The flow under study is a simple sinusoidal shear flow, translating in the cross-
stream direction at a constant speed u. In the absence of translation, u =0, the scalar
decay rate decreases to 0 as κ1/2 when κ → 0 (Bajer, Bassom & Gilbert 2001; Gleeson
et al. 2004; Giona, Cerbelli & Vitacolonna 2004). However, we show that if u is chosen
suitably, specifically taken proportional to κ1/2, the decay rate tends to a non-zero con-
stant. We note that the effect of a translation u �= 0, or rather, of the equivalent addition
to a steady shear of a uniform cross-stream flow, has been studied in the context of ho-
mogenization (Childress & Soward 1990; Majda & McLaughlin 1993). The results of
these studies are, however, not relevant to the long-time decay considered here, because
this is controlled by scalar structures with scales much smaller than the flow scale.

The possibility of fast decay in translating shear flows suggests that they might be
useful in mixing devices. There are, however, several caveats to keep in mind when
comparing their efficiency to that of the stretching flows more typically considered
for this purpose (Wiggins & Ottino 2004). First, the fast-decay property applies only
to scalar concentration with vanishing average in the streamwise direction, since
this average is unaffected by the flow. Second, the fast decay characterizes only the
long-time behaviour of the scalar, and the time taken to reduce the concentration
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fluctuations by a fixed, order-one factor is much longer in shear flows, even with
u �=0, than in stretching flows. Third, and this is a point which we discuss in some
detail, the property of fast mixing is not a robust one. Specifically, although the
long-time decay is in principle controlled by an eigenmode of the advection–diffusion
operator, pseudomodes (i.e. approximate solutions of the eigenvalue problem with
exponentially small errors) play a major transient role: in the presence of small noise
(including round-off errors in numerical simulations), they control the decay rate,
which we show scales like κ2/5.

2. Formulation
We consider the decay of a passive scalar advected by the steadily translating shear

flow

v = (0, α sin(x − ut)), (2.1)

where α and u are two positive constants. The domain is taken to be doubly periodic,
and in the scaled spatial variables chosen for (2.1) is (x, y) ∈ [0, 2π] × [0, 2πL], where
L is its aspect ratio. The concentration C(x, y, t) of the passive scalar obeys the
advection–diffusion equation

Ct + α sin(x − ut)Cy = κ(Cxx +Cyy),

where κ is the molecular diffusivity. Because this equation is independent of y, its
solution can be expressed as a sum of independent Fourier modes. Concentrating on
one such mode, we write

C(x, y, t) = Re Ĉ(x, t)eily−κl2t ,

where l is one of the wavenumbers n/L, with n= 0, 1, 2, · · ·, and obtain

Ĉt + iαl sin(x − ut)Ĉ = κĈxx. (2.2)

The y-independent mode l = 0 is unaffected by advection and decays purely
diffusively; we ignore this mode in what follows, assuming that the initial
concentration satisfies ∫ L

0

C(x, y, 0) dy = 0.

It is convenient to make (2.2) time independent by introducing the coordinate
x ′ = x − ut , that is, by using a frame of reference translating with speed u in the
x-direction. It is also convenient to non-dimensionalize t , u and κ by introducing
t ′ = αlt , u′ = u/(αl) and κ ′ = κ/(αl). Omitting the primes, this transforms (2.2) into

Ĉt − uĈx + i sin x Ĉ = κĈxx. (2.3)

In this formulation, u is the ratio of the translation speed of the flow pattern (2.1) to
the maximum flow speed, and κ is an inverse Péclet number.

3. Eigenvalue problem
We are interested in the long-time decay of the concentration. Clearly, this is

controlled by the spectrum of the operator associated with (2.3). Specifically, we write

Ĉ(x, t) = θ(x) exp(−λt),
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to find the eigenvalue problem

−κθxx − uθx + i sin x θ = λθ, with θ(x + 2π) = θ(x). (3.1)

The corresponding spectrum consists of a countable set of eigenvalues λ with positive
real parts. The eigenvalue with the smallest real part, which we simply denote by λ,
gives the decay rate of the concentration as t → ∞. We now examine the dependence
of this eigenvalue on κ and u in the large-Péclet-number limit κ → 0.

We first note that when the shear is steady, that is, when u =0, the decay rate is
proportional to κ1/2. Indeed, a simple boundary-layer analysis (extended below) gives

Re λ∼ κ1/2

2
for u =0, (3.2)

with the corresponding eigenfunction θ(x) localized near either of the extrema x = π/2
and x = 3π/2 of the velocity profile. The vanishing of the shear at these two points
limits the efficiency of the mixing and leads to the κ1/2 power law (Bajer et al. 2001;
Giona et al. 2004). Intuitively, one might expect that a non-zero translation speed
u �= 0 makes the mixing more efficient by constantly shifting the position of the velocity
extrema. This is not necessarily the case, however: a short computation shows that

Re λ∼ κ

2u2
for u =O(1). (3.3)

This is asymptotically smaller than (3.2), so an O(1) translation decreases the mixing
efficiency. However, (3.3) indicates that Re λ increases as u decreases, leaving open
the possibility that Re λ� κ1/2 for some asymptotically small but non-zero u. We
examine this possibility by considering the case where u = O(κ1/2). We therefore let

u = κ1/2w with w =O(1). (3.4)

In this regime, the decay rate Re λ belongs to either of two eigenvalue branches,
depending on w. The first branch continues (3.2) as u increases from 0 and can be
approximated by a boundary-layer analysis; the second branch continues (3.3) as
u decreases from O(1) values and can approximated using a WKB expansion. We
present these two approximations next.

3.1. Boundary-layer analysis

Motivated by the solution for u = 0, we seek a localized solution and introduce the
expansions

θ(x) = e−wx/(2κ1/2)
[
Θ (0)(X) + κ1/2Θ (1)(X) + · · ·

]
and λ=w2/4 + i + κ1/2λ(1) + · · ·, where X = κ−1/4(x − π/2) and the functions Θ (i)(X)
are assumed to be localized near X = 0. This gives the leading-order eigenvalue
problem

Θ ′′ +

(
λ(1) + i

X2

2

)
Θ = 0.

The solution of interest, with smallest Re λ, is simply given by the Gaussian

Θ (0)(X) = e−(1−i)X2/4, with λ(1) = (1 − i)/2.

Hence we obtain the approximation

Re λ=
w2

4
+

κ1/2

2
+O(κ) (3.5)

for the decay rate.
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3.2. WKB analysis

We introduce the WKB solution

θ(x) =
(
φ(0)(x) + κ1/2φ(1)(x) + · · ·

)
ef (x)/κ1/2

, (3.6)

with λ= λ(0) + κ1/2λ(1) + · · · , into (3.1) and find at leading order that

f (x) = − wx

2
±

∫ x

0

(ν + i sin x ′)1/2 dx ′, with ν =
w2

4
− λ(0). (3.7)

An eigensolution is found if ν can be chosen to ensure that f (2π) = f (0). Since the −
sign in (3.7) yields a decreasing Re f (x), we focus on the + sign and obtain the
condition ∫ 2π

0

(ν + i sin x)1/2 dx = πw + 2niπκ1/2, n= 0, ±1, ±2, · · · . (3.8)

In fact, we can take n= 0 since other values n= O(1) correspond to an O(κ1/2) change
in λ that can be absorbed in λ(1). For ν > 0, (3.8) with n= 0 can be satisfied by taking
the principal branch of the positive square root. Thus, to leading order, we find the
eigenvalue

λ(0) =
w2

4
− ν0(w), (3.9)

where ν0(w) is defined by its inverse w0(ν), the elliptic integral

w0(ν) =
1

π

∫ 2π

0

(ν + i sin x)1/2 dx (3.10)

=
4�

(
3
4

)2

π3/2
F

(
− 1

4
, − 1

4
, 1

2
; −ν2

)
+

π1/2ν

�
(

3
4

)2
F

(
1
4
, 1

4
, 3

2
; −ν2

)
. (3.11)

The second line, giving the integral in terms of hypergeometric functions, is useful
in what follows.† It is easy to check from (3.10) that for large w, ν0(w) = w2/4 −
1/(2w2) +O(w−3), so that (3.9) can be identified as the continuation of (3.3) for
w � 1.

At O(κ1/2), we obtain an equation for φ(0) with solution

φ(0)(x) =
1

(f ′ + w/2)1/2
exp

[
−λ(1)

2

∫ x

0

dx ′

(f ′(x ′) +w/2)

]
.

Imposing periodicity gives the purely imaginary corrections λ(1) = nib, where
n=0, ±1, ±2, · · · and b is an easily computed constant. It is only at the next order
that the real part of λ depends on n: the n= 0 branch is the relevant one for the
long-time decay problem, since the corresponding Re λ is the largest by an O(κ)
amount.

So far, we have derived the approximation (3.9) under the assumption that ν > 0.
As w decreases from large values, however, ν0(w) decreases from a positive value to
attain 0 for

w = w∗ :=
4�

(
3
4

)2

π3/2
= 1.0787 · · · with λ(0) = λ∗ :=

w2
∗

4
= 0.2909 · · · . (3.12)

† We thank A. B. Olde Daalhuis for the derivation of this expression.
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For ν < 0, we continue to use (3.9), interpreting the integral in (3.10) as the analytic
continuation of this integral for ν > 0. This continuation, which involves contributions
along branch cuts for Re x = 0, π, 2π, is precisely given by (3.11). Note that obtaining
the form of the eigenfuction near x = 0, π, 2π would require the use of matched
asymptotics, since (3.7) breaks down for ν < 0 when the principal branch of the square
root is used. We avoid this computation here and rely on the analytic dependence of
eigenvalues on parameters (e.g. Kato 1976).

Thus, our WKB analysis gives the approximation

Re λ=
w2

4
− ν0(w) + O(κ). (3.13)

3.3. Summary

Our asymptotic analysis provides the two possible approximations (3.5) and (3.13) for
the decay rate in the regime (3.4), corresponding to two different eigenvalue branches.
It is easy to verify that the two approximations intersect for

w =w∗ − κ1/2s∗ + O(κ), (3.14)

where w∗ is given in (3.12) and s∗ = π1/2/(2�( 3
4
)2) = 0.5901 · · · . For w smaller

(respectively larger) than (3.14), (3.5) (respectively (3.13)) gives the smaller, i.e. relevant,
decay rate. That this is non-zero in the limit κ → 0 shows that fast mixing can be
achieved in a shear flow by a suitable choice of the translation speed. This choice
takes w = O(1), i.e. u =O(κ1/2), to achieve a distinguished limit in the eigenvalue
problem (3.1) which leads to eigenfunctions with O(κ1/2) spatial scales as is required
for an O(1) decay rate. Physically, this corresponds to a balance between the two
opposite effects that the translation of the sinusoidal flow can have on the scalar
damping: an enhancement caused by the continuous shift of the shearless regions of
the flow, and an inhibition caused by the periodic reversal of the shear. The largest
possible decay rate is obtained by taking w as in (3.14) and is given by

Re λ=
w2

∗
4

+ κ1/2 1 − s∗

2
+O(κ) = 0.2909 · · · + 0.2049 · · · κ1/2 + O(κ). (3.15)

The conclusion just drawn presumes that there are no eigenvalue branches with
real parts smaller than (3.5) or (3.13). Since this is difficult to establish by asymptotic
means only, we rely on numerical solutions of the eigenvalue problem (3.1) to confirm
that this is the case and verify the predictions (3.5)–(3.15).

3.4. Numerical results

Our numerical procedure is based on a truncated Fourier expansion of θ which
transforms (3.1) into a matrix eigenvalue problem, solved by a standard procedure. A
truncation retaining 200 to 300 Fourier modes proves sufficient to achieve convergent
results for 10−3 � κ � 1. As we discuss below, the results for significantly smaller κ

are crucially affected by round-off errors.
The results are summarized in figure 1. Panel (a) shows the real part of the first

few eigenvalues (ordered according to their real parts) for κ =10−2 as a function
of the translation speed u. The comparison with the asymptotic formulae (3.5) and
(3.13) confirms that these provide an excellent approximation to the eigenvalue with
the smallest real part. Panel (b) shows this particular eigenvalue only, but for three
values of κ and as a function of the scaled speed w. The eigenvalues collapse to the
κ-independent approximation (3.13) to the right of the branch intersection; to the
left of this intersection, they match well the approximation (3.5) which gives curves
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Figure 1. Real part of the eigenvalues of the advection–diffusion operator in (3.1) as a
function of the translation speed u. (a) Numerical results for κ = 10−2 (�) are compared with
the two asymptotic estimates (3.5) (dashed line) and (3.13) (solid line) for the eigenvalue with
the smallest real part. (b) Numerical estimates of the eigenvalue with smallest real part for
κ = 10−1 (�), 10−2 (�) and 10−3 (�) are plotted against w = u/κ1/2. The asymptotic estimates
(3.5) (dashed lines) and (3.13) (solid lines) are also shown, with the dotted line indicating the
limit of (3.5) as κ → 0.

separated by a constant O(κ1/2) term. (The limit of (3.5) for κ → 0, that is the curve
w2/4, is indicated by the dotted line.) Figure 1(b) demonstrates the high accuracy of
the asymptotic approximations (3.5) and (3.13). In fact, it is likely that the error made
for Re λ is much smaller than the O(κ) our computations suggest.

Our analysis of the eigenvalue problem (3.1) allows us to conclude that a suitable
choice of u ensures that the passive-scalar concentration decays exponentially with a
decay rate that is independent of κ as κ → 0. This exponential decay appears in the
long-time limit only, and it is therefore important to estimate the time taken for this
limit to be reached. Here, of course, the shear flow (2.1) compares unfavourably with
exponentially stretching flows: whilst for the latter the exponential behaviour sets in
after a time that scales like log(1/κ), for our shear flows a much longer, O(κ−1/2),
scaling is necessary. This is because the stretching is only linear in time, and the
spatial scales need to be reduced to O(κ1/2) values for the O(1) decay rate to be
established.

To confirm this, we present the results of numerical simulations of the advection–
diffusion equation (2.3). Figure 2(a) shows the evolution of the L2 norm ||Ĉ||(t) of
the concentration in three simulations with κ = 10−3, 10−2 and 10−1, respectively.
The corresponding values of u have been chosen to maximize Re λ according to the
asymptotic formulae (3.5) and (3.13). As a result, the decay rate is nearly independent
of κ , and ||Ĉ|| decays at almost the same rate, approximated well by λ∗, in the three
simulations. The exponential phase of the decay is seen to occur after a phase of much
slower decay which lasts for a time consistent with the expected κ1/2 scaling. The
structure of the decaying scalar after a long time, here t = 300, is shown in figure 2(b).
The pattern is that predicted by the eigenfunction analysis, with a time-independent
profile for |Ĉ|/||Ĉ|| and a phase propagation observed in Re Ĉ and Im Ĉ.

The numerical results presented so far have been limited to only moderately small
diffusivities κ � 10−3. This is because we found that neither the eigenvalue problem
nor the time-evolution problem could be solved reliably for smaller diffusivities. To
illustrate this, figure 3(a) shows results of the numerical computation of Re λ using
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Figure 2. (a) Evolution of the L2 norm ||Ĉ|| of the concentration in simulations of the
advection–diffusion equation (2.3) with κ = 10−3, 10−2 and 10−1 (solid lines with decreasing
thickness) in lin–log coordinates. The exponential decay expected in the long-time limit for
κ → 0 is also shown (dashed line). (b) Profiles of Re Ĉ(x) (solid line) and |Ĉ(x)| (dotted line)
normalized by ||Ĉ|| obtained for κ =10−3 at t = 300.
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Figure 3. (a) Real part of the smallest eigenvalue of (3.1) obtained numerically for
w = u/κ1/2 = 1 as a function of the diffusivity κ . Results of double-precision (�) and
single-precision (�) computations are shown, together with the asymptotic result Re λ∼ λ∗
(dotted line). The departure from this asymptotic behaviour for κ � 10−3 can be attributed to
round-off errors; this leads to the decay of Re λ according to the κ2/5 power law indicated
by a dashed line. (b) Decay rate γ as a function of κ in simulations with external noise with
amplitude A =10−3 (�), 10−2 (�) and 10−1 (�). A κ2/5 dependence similar to that in (a) is
indicated by the dashed line.

double- and single-precision arithmetic. These show that the prediction that Re λ tends
to a non-zero value as κ → 0 is not robust: the noise introduced by round-off errors
leads to Re λ= o(1). More specifically, Re λ→ 0 with what appears to be a κ2/5 power
law. The prefactor of the power law changes between double- and single-precision
computations (effectively a change in the noise intensity), but the behaviour is robust
to changes in other details of the numerical implementation such as truncation and
algorithm choice. Note that the eigenvalues found numerically are also consistent
with the numerical solutions of the time-evolution problem. In this case, the evolution
is not exponential, but a decay rate can be defined, say as γ = t−1 log[||C||(t)/||C||(0)],
which nearly coincides with the eigenvalue.
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Figure 4. (a) Spectrum (symbols) and ε-pseudospectra of the advection–diffusion operator in
(3.1) with κ = 10−3 and w = u/κ1/2 = 1. The contours mark the boundary of the ε-pseudospectra
with ε = 10−1, 10−2, · · · , 10−8. (b) Construction of a pseudomode. The real parts of f (x)
(dotted line), defined in (3.7), of its derivative (dashed line), and of the rough approximation
ψ = exp[f (x)/κ1/2] to the WKB solution obtained for w = 1 and λ= 0.0267 + i 0.930 are shown
in an interval of x surrounding the local maximum x∗ = 0.89 of Re f (x).

We argue that the behaviour of Re λ and γ in the presence of round-off error
is relevant physically, since the noise induced is not fundamentally different from
other, physical, noises such as fluctuations in the advecting velocity field or in the
concentration field. This is confirmed by figure 3(b) which shows the decay rate γ

estimated from numerical simulations of the time-evolution problem (2.3) perturbed
by the small multiplicative noise Aη(x, t)Ĉ(x, t), where A is an amplitude, ranging
from 10−3 to 10−1, and η(x, t) is a space–time white noise. The κ2/5-dependence of γ

observed with round-off error is recovered, with a prefactor that decreases as the noise
level increases. In view of its relevance, both physical and numerical, it is worthwhile
examining the cause of this κ2/5 power law. In the next section, we attribute it to the
existence of pseudomodes for the operator in (3.1), that is, approximate solutions of
(3.1) with exponentially small errors.

4. Pseudomodes
As discussed by Reddy & Trefethen (1994), advection–diffusion operators such as

that in (3.1) have spectra that are highly sensitive to perturbations in the large-Péclet-
number limit κ → 0. This can be quantified by noting that the ε-pseudospectrum
(Trefethen 1997; Trefethen & Embree 2005) can be an O(1) distance away from
the spectrum for ε exponentially small in κ . This is illustrated by figure 4(a) which
shows the spectrum and pseudospectra of (3.1) for κ = 10−3 and w = 1 computed
using the EigTool package (Wright 2002). Significant distances between the spectrum
and the boundary of the pseudospectra for small ε are observed, notably for small
Re λ in the region Im λ≈ ±1. The nature of the pseudospectra can be explained by
the existence of exponentially accurate pseudomodes (Dencker, Sjöstrand & Zworski
2004; Trefethen 2005). In our context, existence of pseudomodes with Re λ< λ∗
implies that the passive-scalar decay can be significantly slower than exp(−λ∗t) if the
advection–diffusion system is perturbed, for instance by external noise.
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Pseudomodes are easily constructed from the WKB analysis in § 3.2. Indeed, if
Re f (x) has a local maximum x∗ > 0 for a given λ, that is Re f ′(x∗) = 0, Re f ′′(x∗) < 0,
then a pseudomode localized near x∗ can be built by taking the WKB solution in an
O(1)-neighbourhood of x∗ and joining it smoothly to 0 outside this neighbourhood so
that the periodic boundary conditions are satisfied. Since the switch from one solution
of (3.1) (the WKB solution) to another one (≡ 0) is made where the former solution is
exponentially small, the result is exponentially close to an eigensolution, even though
λ is distant from the spectrum. This type of argument can be made rigorous (Dencker
et al. 2004; Trefethen 2005), but the heuristic justification just given is sufficient for
our purpose.

The construction of a pseudomode is illustrated in figure 4(b). This shows Re f (x)
and Re f ′(x) for w = 1 and λ= 0.0267 + i 0.930 (the smallest eigenvalue found
numerically for κ =10−6). In the range of 0 <x < 2.6, f (x) has a maximum at
x∗ = 0.89, and a local minimum at π − x∗ = 2.25. Correspondingly, the WKB solution
has the form of a wavepacket localized near x∗. For x > 2.6, Re f (x) increases well
above Re f (x∗), and the WKB solution grows widely, as the extreme right of the figure
suggests. This, however, does not affect the construction of the pseudomode, since the
WKB solution is replaced by 0 in that region. Note that an optimum pseudomode, in
the sense that it approximates a solution of (3.1) for fixed λ with minimum error, is
constructed by switching from the WKB solution to 0 in a neighbourhood of π − x∗,
where Re f (x) is minimum.

Among all the possible pseudomodes, it is intuitive that the ones with smallest Re λ
are the most important for the dynamics since they decay most slowly. However, for
fixed κ , there is a limitation in how small Re λ can be. This limitation, which we
now examine, is key to the κ2/5 power law observed in the presence of noise. We first
note that the small values of Re λ found in our numerical solution of the eigenvalue
problem for w =1 correspond to Im λ close to ±1 (see figure 4), with x∗ ≈ π/2 or
3π/2. Focusing on Im λ> 0, and seeking a distinguished scaling, we let

λ= i(1 + ε2λi) + ε4λr and x = π/2 + εξ, (4.1)

where ε is a small parameter, and λi , λr and ξ are O(1) constants. Introducing into
the expression of f ′(x) and solving for x∗ gives the approximation

x∗ = π/2 + εξ∗, with ξ∗ = − 21/2
(
wλ1/2

r − λi

)1/2
.

(There may be two additional zeros between x∗ and π − x∗, but these do not change
the structure of the WKB solution.) If, as argued above, a pseudomode is constructed
optimally by replacing the WKB solution by zero where this solution is the smallest,
that is at π − x∗, the error made in the eigenvalue problem is roughly exp(−α), where

α =
f (x∗) − f (π − x∗)

κ1/2

can be termed ‘attenuation factor’. With the scaling in (4.1), this factor is approximately

α ∼
8ε5

(
wλ1/2

r − λi

)3/2 (
3wλ1/2

r + 2λi

)1/2

15w3κ1/2
.

Only pseudomodes with a sufficiently small error are susceptible to being excited
by small external noise: this requires that α be sufficiently large and hence that
ε � O(κ1/10). Returning to (4.1), we therefore obtain the scaling Re λ= O(κ2/5)
consistent with the numerical results of § 3.4. The additional scalings Im λ= i + O(κ1/5)
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Figure 5. Evolution of the concentration in the presence of a small noise. (a) The evolution of
the L2 norm ||Ĉ|| of the concentration for κ = 10−6, 10−5 and 10−4 (solid lines with decreasing
thickness). (b, c) The concentration profile for κ = 10−6 at t = 2150 and t = 4000, respectively.

and x∗ − π/2 = O(κ1/10) are also consistent with the eigenvalues and eigenfunctions
found numerically (not shown) when the round-off error plays a major role.

Further insight in the role of the pseudomodes can be gained from figure 5.
Figure 5(a) shows the evolution of the concentration in simulations with multiplicative
noise with amplitude A= 10−3 and for three values of κ . The evolution is akin to
a succession of transient events caused by the noise. The structure of Ĉ is highly
transient, but its gross features stay similar throughout the simulation, with two highly
oscillatory peaks shifted by π. This is illustrated by figures 5(b) and 5(c) showing
Re Ĉ obtained for κ = 10−6 at two different times. These plots focus on the range
0 � x � 1.5, so a single peak appears in each. Whilst one cannot associate a single
pseudomode to each peak, as their form is continuously evolving as a result of the
noise, comparison with the pseudomodes with small Re λ and Im λ near ±1 strongly
suggests that these play a crucial role in the dynamics.

5. Discussion
The main conclusion of the paper is as follows. In the translating shear flow (2.1) or

equivalently the steady two-dimensional flow (−u, α sin x), the decay rate of a passive
scalar can be arranged to be O(1) in the small-diffusivity limit κ → 0 by a suitable
choice of u. Specifically, taking u =O(κ1/2) gives a decay rate

Re λ∼ f (w), (5.1)

where f (w) is an O(1) function given either by the first term in (3.5) or by (3.13)
depending on whether w = u/κ1/2 is smaller or larger than w∗ = 1.0787 · · ·.

This conclusion has been reached by considering a single Fourier mode l �=0 in the
y-direction, but it is easily verified that it implies that a suitable choice of u leads to
an O(1) decay rate of all the non-zero Fourier modes, and therefore to the fast decay
of any concentration distribution with zero y-average. To see this, we return to the
unscaled variables λ, u and κ used in (2.1)–(2.2), and rewrite (5.1) as

L

α
Re λ∼ nf

(
n−1/2w

)
, where w =

L1/2u

(ακ)1/2
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and n= 1, 2, · · · characterizes the Fourier mode. Choosing u such that w = w∗ means
that f (·) is defined by the first term in (3.5) and hence that

L

α
Re λ∼ w2

∗
4

for n= 1, 2, · · ·

as κ → 0. Thus all the non-zero Fourier modes have asymptotically the same decay
rate. (In fact, the O(κ1/2) correction in (3.5) adds a term proportional to nκ1/2 to the
decay rate, so that the higher modes n> 1 experience faster decay.)

Our results also indicate that the non-zero limit of the decay rate as κ → 0 is fragile,
as might be expected from the non-normality of the governing eigenvalue problem.
This is quantified by showing that the decay rate decreases to zero like κ2/5 in the
presence of a small noise, and is explained in terms of pseudomodes. We note that
the pseudomodal behaviour may be relevant to the situation recently examined by
Vanneste (2006) where the shear flow translates randomly in time rather than steadily.
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